Accelerated Structure-Aware Reinforcement Learning for

Delay-Resource-Aware Flow Allocation in Wireless Systems

Mahesh Ganesh Bhat, Shana Moothedath, Senior Member, IEEE, and Prasanna Chaporkar

Abstract—This paper develops a structure-aware reinforce-
ment learning (RL) approach for delay- and energy-aware flow
allocation in resource-constrained 5G User Plane Functions
(UPFs). We consider a dynamic system with K heterogeneous
UPFs of varying capacities that handle stochastic arrivals of
M flow types, each with distinct rate requirements. We model
the system as a Markov decision process (MDP). We propose a
post-decision state (PDS)-based learning approach that exploits
the underlying structure of the MDP. By decoupling action-
controlled dynamics from exogenous factors and exploiting the
monotonic structure of the value function, PDS facilitates faster
convergence and efficient adaptive flow allocation in the absence
of statistical knowledge of the exogenous variables. We propose
two PDS-based algorithms: (i) PDS-value iteration and (ii) PDS-Q
learning algorithms. We prove the convergence of the algorithms
and compare their memory and computational requirements.
Although PDS-based learning enables faster convergence when
compared to standard learning approaches such as Q-learning,
the exponential growth of the state space with increasing problem
size causes even PDS methods to suffer from the curse of
dimensionality. To address this, we introduce a tournament-based
approximation approach that decomposes the K-UPF problem
into multiple 2-UPF sub-problems, each solved using the PDS
learning method and then combine the sub-problem policies to
obtain the policy of the original problem. This decomposition
enables a scalable framework to efficiently approximate the
solution for larger instances. Simulation results demonstrate that
the proposed PDS algorithms converge faster and achieve a
lower long-term cost than standard Q-learning, highlighting the
effectiveness of PDS-based RL for resource allocation in wire-
less networks. We compared the tournament approach against
standard benchmarks and a greedy strategy, and validated its
performance through empirical evaluation.

Index Terms—Reinforcement learning, resource allocation,
UPF flow allocation, energy-aware decision-making

I. INTRODUCTION

The evolution of modern 5G and beyond networks (BSG)
has enabled a wide range of applications with diverse service
requirements, including high-throughput broadband, latency-
critical control applications, and large-scale IoT connectivity.
This has led to increasing network traffic with heterogeneous
and stringent quality of service (QoS) requirements. The rapid
growth of infrastructure to support large amounts of traffic
has led to an increase in the energy footprint. As a result,
sustainability is a primary objective in the design of mod-
ern networks. The recommendation ITU-R M.2160 identified
sustainability as one of the highlights in the clauses of “Moti-
vation and societal considerations” and “User and application

M. G. Bhat and S. Moothedath are with Electrical and Computer En-
gineering, Iowa State University. Email: {mgbhat, mshana}@iastate.edu. P.
Chaporkar is with Electrical Engineering, Indian Institute of Technology
Bombay. Email: chaporkar@ee.iitb.ac.in

This work is supported by NSF-CNS 2415213, US and MeitY, India.

trends”. This motivates energy-aware resource management
and greener network deployments. With this objective in focus,
while extensive work has addressed resource allocation and
scheduling in Radio Access Networks (RAN) [1], [2], it is
important to consider the same in the User Plane Function
(UPF), which plays a pivotal role in the 5G core.

The UPF acts as a central data-plane interconnection point
within the 5G core, responsible for data forwarding, traffic
routing, and enforcing QoS policies. Traffic flow allocation to
UPFs directly affects network performance and reliability. Fur-
thermore, UPFs are virtual functions deployed on a variety of
infrastructures and vary in characteristics such as geographical
location, computational capacity, user proximity, and energy
profiles (the amount of operational energy contribution from
green energy). These factors influence the selection of the
UPF and underscore the need for a principled approach for
flow allocation, rather than a simple data forwarding approach.
Designing intelligent and adaptive flow allocation strategies is
essential for achieving scalable, delay-sensitive, and resource-
efficient performance in next-generation mobile networks [3].

Reinforcement learning (RL) presents a promising frame-
work for addressing the challenge of flow allocation by
enabling data-driven, adaptive decision making in dynamic
and uncertain network environments with limited knowledge
[4], [5]. Unlike traditional methods, RL can learn optimal
policies through interaction with the system, accounting for
stochastic arrivals, departures, and system constraints, making
it particularly well-suited for dynamic, delay-sensitive and
resource-constrained applications in next-generation networks.

This paper develops an RL-based framework for dynamic
flow allocation in 5G networks with multiple UPFs and het-
erogeneous flows. Under the stochastic arrivals and departures,
we seek to allocate the incoming flows to specific UPFs
while minimizing the delay and power usage in the network.
By formulating the problem as a Markov Decision Process
(MDP), we capture the stochastic nature of the network traffic
and propose novel RL algorithms to learn optimal allocation
policies when the transition dynamics of MDP is unknown.
Unlike prior works that adopt deep RL—based approximations,
we directly solve the MDP using a value-iteration—based
algorithm with provable convergence to the optimal solution.
To solve the MDP, we propose a reinforcement learning algo-
rithm that exploits the underlying problem structure, including
monotonicity of the value function and the separability of the
variables. By incorporating a post-decision state (PDS) anal-
ysis that separates the endogenous and exogenous dynamics
and the monotonicity of value function, which we prove in
the paper, the proposed algorithm achieves faster convergence
compared to the standard RL approaches. The proposed ap-

proach enables real-time, adaptive decision-making, address-
ing the limitations of static or model-based techniques in
highly dynamic environments to optimize performance while
ensuring optimal convergence and resource constraints. To the
best of our knowledge, the proposed approach constitutes the
first framework for energy- and delay-aware flow allocation
with provable optimal convergence, in contrast to prior deep
RL approaches that lack optimality guarantees [3], [6], [7].
A major challenge that limits the application of RL in real-
world systems is scalability. In many domains, the state space
grows exponentially with the size of the problem, and the UPF
allocation problem studied in this paper is no exception. As the
number of UPFs increases, the state space grows exponentially,
resulting in the well-known curse of dimensionality. To address
this challenge in the UPF allocation problem, we propose
an approximate approach using a sub-problem decomposi-
tion strategy. Specifically, we decompose the original K-
UPF problem into individual 2-UPF subproblems, solve each
subproblem independently, and then aggregate their solutions
to construct a policy for the original problem. We analyzed
the performances of our proposed approaches to evaluate their
effectiveness, compared them against benchmark approaches,
and validated their superior performances and scalability.
The key contributions of this paper are fourfold.

e We propose a dynamic model for the heterogeneous flow
allocation problem, considering random flow arrivals and
departures, as well as resource-limited UPFs. We formu-
lated the problem as a delay- and energy-aware MDP,
enabling principled analysis to learn optimal adaptive
allocation policies under unknown stochastic network
dynamics and unknown individual UPF costs.

e We propose post-decision state (PDS)-based RL algo-
rithms, a PDS value iteration (PDS-VI) algorithm, and a
PDS-Q learning algorithm to solve the dynamic learning
problem. The proposed algorithms leverage the problem
structure, specifically, the separation between exogenous
and controllable dynamics and the monotonicity of the
MDP value function, to simplify learning, enhance sam-
ple efficiency, and accelerate convergence. We provide
convergence guarantees for the proposed PDS algorithms.

e To address scalability in large-scale problems, we pro-
pose a tournament-based approximate PDS approach
using problem decomposition. The proposed heuristic
decomposes the K-UPF problem into multiple 2-UPF
subproblems, each solved using the PDS-VI method. The
solutions are then combined using a tournament approach
to obtain a policy for the original problem.

e We evaluated the performance of the proposed approach
via numerical simulation and compared it against the
baseline algorithms. For small-scale problems where the
optimal solution is computable, we compared the two
proposed PDS algorithms with the standard Q-learning
algorithm using exact error metrics. For large-scale prob-
lems, we evaluated the proposed tournament-based ap-
proach against a greedy heuristic and demonstrated its
significant performance improvements.

The rest of the paper is organized as follows. In Section II

we present the related work. In Section III we present the nota-
tions and preliminaries. In Section IV we present the problem
formulation and the MDP modeling of the UPF problem. In
Section V we present the proposed PDS RL algorithms. In
Section VI we present a new approximate algorithm based on
the PDS analysis approach. In Section VII we present the sim-
ulation analysis and comparison with benchmark algorithms.
In Sections VIII, IX we present the theoretical proofs of our
results. Finally, in Section X we present the conclusion.

II. RELATED WORK

The flow allocation problem is related to the task scheduling
problem and has been extensively studied in the context of
computing and communication systems. Earlier works primar-
ily addressed static (optimization) allocation problems [8]-
[10], limiting adaptability in dynamic and uncertain environ-
ments. Many early works on dynamic scheduling focus on
optimal scheduling of computational tasks in the context of
cluster and heterogeneous computing [11], [12]. The extension
of heterogeneous computing as cloud and edge computing into
communication networks necessitates scheduling algorithms
with energy and delay awareness [13]. This includes the
computational offloading problem to edge/cloud server with
energy and delay considerations. A Mobile Edge Computing
(MEC) offload scheduling problem with random arrivals is
studied and an integrated solution with RL and stochastic
gradient descent (SGD) is proposed for a single edge cloud
setting [14]. A Deep Reinforcement Learning (DRL) approach
is proposed for delay-resource-aware service optimization in
satellite-deployed UPFs [3]. DRL-based resource allocation
schemes are proposed for minimizing the delay in MEC [6],
[7]. DRL approaches rely on approximate function represen-
tations and often require extensive training data. Further, in
most of these studies, the task arrivals and departures are
assumed to be fixed and known. However, the task arrivals
and departures are often exogenous and unknown. Moreover,
introducing ML-based controller into the network for efficient
flow allocation, while intended to improve energy efficiency,
may itself incur additional energy costs. In particular, deep
learning—based techniques typically require tuning a large
number of model parameters, and the energy savings achieved
through improved allocation can be offset by the additional
energy required to train and update the model. Our goal in
this paper is to develop an efficient reinforcement learning
framework that offers fast and sample-efficient learning by
leveraging the problem structure. Another key advantage of
our online RL approach is that our proposed online learning
algorithm provides a low-complexity solution that ensures the
intended energy savings are indeed realized.

The inherent structural properties of allocation and schedul-
ing problems enable post-decision state (PDS)-based RL anal-
ysis. PDS analysis has been applied in scheduling and alloca-
tion problems. PDS has been studied in the context of delay-
sensitive wireless transmission scheduling for energy-efficient
point-to-point communication and accelerated learning [15],
[16]. However, they mostly focus on packet transmission from
a single queue. A PDS-based online learning for server alloca-
tion in data centers was introduced in [17] to reduce electricity

costs. Wireless resource scheduling in virtualized RAN net-
works with random arrivals and departures, focusing on mobile
device utility, is considered in [18]. In [18], the spectrum
allocation problem is formulated as a non-cooperative stochas-
tic game with the objective of maximizing provider profits.
An approximate approach is proposed by decomposing the
resulting multi-agent MDPs into multiple single-agent MDPs,
and a PDS-based online localized algorithm is developed.
RL and DRL-based privacy-aware offloading methods for IoT
applications using PDS are studied in [19], [20].

In contrast to these works, we address the sustainability
of core network infrastructure by jointly considering energy
efficiency and delay in flow allocation. We focus on modeling
the dynamic allocation of heterogeneous flow types, under
unknown flow arrivals and departures. We aim to leverage the
structural properties to learn the optimal policy using PDS-
based RL to solve delay- and energy-aware flow allocation,
while considering the capacity constraints. To the best of
our knowledge, this problem in a multi-server scenario with
stochastic arrivals and departures has not been previously
studied except for the conference version of this paper [21].
In the conference version, we provided the PDS-VI algorithm
and its empirical evaluation. In this journal version, we present
a new PDS-based Q learning algorithm. Further, we propose
an approximate PDS approach via problem decomposition
approach to tackle large-scale systems. We also performed
extensive simulations, robustness analysis, and comparison
across multiple baseline algorithms.

III. NOTATIONS AND PRELIMINARIES

A. Markov Decision Process (MDP) Preliminaries

MDP is the standard framework for modeling a stochastic
dynamical system and computing its optimal control policy
[22], [23]. Mathematically an MDP can be defined as follows.
Let S and A be compact sets describing the states and actions
of the controller (agent), respectively, and r : S x A — R is
the reward function. The system dynamics is characterized by
the probability transition structure P, where P(s'|s, a) is the
probability of transitioning to state s’ from state s under con-
trol action a. A policy 7 : & — A is a conditional distribution
m(a|s) that guides the decision-making process of an agent.
Attime t € {1,2,...,}, the agent observes the current state s;
and chooses an action a; from the policy m(als), and observes
the reward (s, a¢). The action chosen by the agent at a state
drives the agent to a next state according to P(s;y1|s¢, ar),
where s;y; belongs to the set of neighboring states of s;.
A trajectory T = {sg, ag, 81, a1, $2,a2, ..., } is a sequence of
state-action pairs traversed by the agent following a policy. The
goal of the agent is to find an optimal policy 7* that maximizes
the cumulative reward r(7) = limp_4 ZtTZO vor(se, ag),
where v € (0,1] is the discount factor which captures how
myopic the agent is. When the model PP is known, 7* can be
computed using dynamic programming [22], [23]. However, in
many real-world problems, the model is unknown. The goal
of a reinforcement learning algorithm is to learn the optimal
policy 7* without prior knowledge of the model [23].

IV. PROBLEM FORMULATION: DELAY-SENSITIVE FLOW
ALLOCATION IN 5G USER PLANE FUNCTIONS

In this section, we present the wireless environment (sys-
tem) and then discuss the modeling and formulation. The key
notations are listed in Table I.

:Flow Arrival :No flow arrival
v (f=m) v (f=0)
sg')e Time slot t s(':f)e Timeslott + 1
UPF 1 UPF 1 ‘
«-«UPF 2 ‘ UPF 2 ‘

T T
Flow Departuresi Flow Departuresi
v v

Time

Fig. 1: A schematic representation of the evolution of the time-
slotted system. The horizontal blocks represent UPFs. Each
cell for a UPF represents a type of flow, and the width of the
cell represents the number of flows currently being served by
the UPFs. Thus, there are four flow types, i.e., M = 4, and a
wider cell indicates that a larger number of flows of that type
are being served at the UPF. In the example, a flow arrives at
time slot ¢, whereas no arrival occurs at time slot ¢ + 1.

TABLE I: List of Important Notations

Symbol Description
a, a Action and Action indicator matrix of dimension K x M
f Flow arrival index, f € {0,1,..., M}
Qi Flow departure probability of UPF k&
u Departure matrix of dimension K x M
s, n Pre-decision state and allocation (K x M) matrices
s, n Post-decision state and allocation (K x M) matrices
P(n'|s,a) | Transition probability of the state matrix
P(n|s,a) | Action controlled dynamics
P(n/|n) Departure dynamics
P(f") Flow arrival probability
Pk Known probability of the transition dynamics
pv Unknown probability of the transition dynamics
|4 Value vector
\%l Optimal value function
1% Post-decision state value vector
& Optimal post-decision state value vector
Q Pre-decision state Q-table
Q* Optimal pre-decision state Q-table
@ Post-decision state Q-table
@* Optimal post-decision state Q-table

A. System Model

Consider a 5G network. The time is slotted. At the be-
ginning of each slot, a new flow arrives in the network with
probability (w.p.) p. Each flow arriving can be of one of M
types. Let b, denote the probability that an arriving flow is
of type m for m € [M], where [Z] := {1,2,...,Z} for
any integer Z. We also assume that the flow arrivals and its

type are independent across flows. The flow type indicates the
average flow rate requirement. Let R,,, denote the average rate
requirement for the flow of type m. Without loss of generality,
R,, < R,y for every m € [M — 1]. For each flow that
arrives, the network must decide whether to accept the flow.
Specifically, if the required rate cannot be guaranteed, then
admission is denied to the flow; otherwise it is accepted.

If a flow is accepted in the network, then it is assigned
a UPF that handles the flow until it departs and provides it
the required rate based on its type. We assume that there
are K UPFs in the network. Each UPF may have distinct
capabilities in terms of the available memory, computational
and switching speeds. Based on the capabilities, let C}, denote
the maximum data rate (in bits/second) that UPF k € [K] can
support. Finally, at most one flow departs the k" UPF w.p.
gk, for k € [K], at the end of the slot, independently of flow
departures in other slots. The departing flow is equally likely
to be any existing flow in the UPF. A flow arriving in a slot
can depart in the same slot. We now formulate the dynamic
UPF allocation problem as an MDP.

B. Markov Decision Process Formulation

Flow allocation in 5G networks is inherently a dynamic
decision-making problem. MDP offers a principled framework
for capturing such dynamics and optimizing long-term per-
formance. In this section, we model the delay- and energy-
sensitive flow allocation problem in UPFs as an MDP and
describe its key components in detail.

1) State Space: We define the state of the system as a tuple
containing the allocation matrix n and the flow arrival index
f,ie, s=(n,f). For astate s = (n, f), let n be a K x M
matrix such that the (k, m)th entry ny,, denotes the number of
type m flows handled by £*" UPF at s and f € {0,1,..., M}
denotes the type of flow arrived at s. Here, f = 0 means there
is no flow arrival at s. Let Ry (s) denote the total average rate
that UPF k needs to support in s. Note that

Ri(s) =). ngm B (1)

me[M]

Let us define the state space S as
S = {s . Oy > Ry(s) forall ke [K], f e {07...,M}}.

Note that |Cy/R; | is the maximum number of flows that UPF
k can support at any given time. Thus, S is a finite set.

2) Action Space and Control Policy: The action set is
defined as below. Consider a state s = (n, f). Let A(s) be the
set of feasible actions in s. Then A(s) < {0, 1, ..., K}, where
k e A(s) if C, > Ri(s) + Ry, for k € [K]. For a € A(s),
a € [K] indicates flow f is allocated to UPF ¢ and a = 0
indicates the flow is blocked. The flow f in state s must be
admitted as long as A(s) # {0} and will be handled by the
allocated UPF until it departs. The action set is of dimension
K + 1. For a € A(s), we define a K x M indicator matrix,
a, for analytical purposes.

1, ifa=Fkand f =m,
Apm = , 2)
0, otherwise.

Thus, a is a sparse indicator matrix with at most one non-zero
entry (equal to 1), with all remaining entries being Os.

A control policy 7 : & — A maps the states to feasible
action. We assume that 7 is causal, i.e., the action chosen for
state s may depend on the past states and actions taken, but
not on future evolution. Moreover, 7 can also be a randomized
policy, i.e., for a state action can be chosen randomly from the
set of feasible actions.

3) Cost Function: Let the cost incurred in state s be £(s),

E(s) = D) (an(s) +0k(s)), 3)

ke[K]

where «y(s) denotes power cost, and d(s) denotes the delay
cost at UPF k in state s. These costs are given as
an(s) = cxRi(s) and 8 (s) = 0713 4)
C — Ri(s)
Here, cj is power cost for switching one bit at UPF k.

4) System Dynamics: The system dynamics is characterized
by the probability transition dynamics P, where P(s'|s, a) is
the probability of transitioning to the state s’ from the state s
under control action a. Consider the current state s = (n, f)
and the next state ' = (n’, f’), where n,n’ denote the flow
allocation matrices and f, f’ the flow arrivals.

The transition dynamics consist of two components: (i) the
evolution of the allocation matrix 72, which depends on the
current state, control action, and stochastic departures, and (ii)
the arrival process f, which is exogenous and independent of
the control action, follows a fixed but unknown probability
distribution. Formally, the transition probability

P(SI‘S,CI,) =]P’(n'|s,a) P(f/)a (5
where the arrival probability is given by
M

P(f") = (1 =p)Lp—o; +p Z b L pr—my- (6)
m=1

The evolution of the allocation matrix n depends on the depar-
ture process. To define P(n/|s, a), we first define the departure
process. Let n;, and n). be the row vectors corresponding to
UPF £ in the allocation matrices at the current state s and next
state s’, respectively. Define the canonical vector in RM as

) 1, ifj=
em € (0,1}, j={0’ o=

if j #m

Consider a scenario where a flow of type m departs. Let
Di(n),nk, f) be the transition probability of UPF k, i.e.,
probability of transitioning from my to mj, under arrival f.
Let us first consider the case where no new flow arrives in
s or flow of type m arrives but A(s) is empty. Then, either
n = n’, or the allocation matrix transitions to a distinct state
due to flow departures. Then,

1—qp, if nj = ny
MNkm 1 [
Loe—km o ifnl =n, —e
Di(nfyymp, f) = 4 0 T DT ")
1, ifn;, =n; =0
0, otherwise.

Now consider a case where a new arrival of type m arrives at
state s and .A(s) is non-empty. Without loss of generality, let
a = k’. Two cases arise.

Case 1: For any UPF k # k’. The departure probability in
this case is same as in Eq. (7).

Case 2: For UPF £’. Then,

1—q, if ’I’I,;c, =Ny + €ep
Qe % if nf, = ny
Dy (i, iy, f) =3 g - %, ifn), =np +em
—e,, and m # m
0, otherwise.
The transition probability
K
P(n'|s,a) = | | Di(nj, ni,). ®)
k=1

Egs. (5), (6), (8) complete the modeling of system dynamics.
5) Optimal Policy: Let s7(t) be the state in time slot
t under policy m. For any function g : & — R, we use
the shorthand g™ (t) to denote g(s™(t)). For instance, R (t)
denotes the total rate that UPF k must support at time ¢ under
policy m, i.e., Ri(s™(t)), and £7(t) denotes the cost incurred
at time ¢, i.e., £(s™(t)). Our goal is to learn optimal policy 7*

that minimizes the cumulative discounted cost

T
&= lim > 4" € (b).
t=0

T—0

Flow Arrival

(n
A2
T —— 5
)) state |! Input — RL
A A s=nf) Algorithm | | |
$ 3 1
N1 Nyz o Mgy a Action ‘

Reward

£
/

N=UPF|"21 M22 - NM2m !
S N e o S Policy

Nk Nkz - Nk,
Flow Types

Environment

RL Agent

Fig. 2: Schematic of the MDP model and RL approach.

V. PROPOSED STRUCTURE LEVERAGING REINFORCEMENT
LEARNING APPROACH

In this section, we present reinforcement learning (RL)
algorithms to compute the optimal policy for the system.
In practical settings, the arrival probabilities (p, b,,) and
the departure probabilities (g;) are often unknown, rendering
classical dynamic programming approaches inapplicable. To
address this, we propose model-free RL algorithms that learn
the optimal value function through interaction with the envi-
ronment, thereby enabling the derivation of an optimal policy
without requiring prior knowledge of the system dynamics.
We begin by introducing the Q-learning algorithm, a widely
used method for learning optimal policies in settings where
system dynamics are unknown.

A. Preliminaries: Q-Learning

Q-learning is a commonly used learning algorithm for value
and policy estimation in models with unknown transition
dynamics. In standard Q-learning for cost-minimization, each
state-action pair specific value function is estimated such that

V(s) = ming Q(s, a), where
50700])

where so and ag are the initial state and action, and ~y
is the discount factor. Q-value is the expected cumulative
reward/cost for taking a specific action in a specific state and
then following the optimal policy thereafter, and Q-table is
the tabular representation of the Q-value function. The core of
the conventional Q-learning algorithm is the Q-value update
based on the known information tuple (s, a,&,s’), given by

Qt+1(87 a) th(Sv a)+
o [€(s) + 7 min Qi(s',a') — Qi(s,a)], (9

Q" (s,a) = E, lZ 7t§t+1
t=0

where o is the learning rate in the ¢ iteration of Q updates.
While Q-learning is a standard method for RL, the transition
structure of the problem enables us to leverage the concept of
post-decision state in our analysis.

B. Post-Decision State-Based Learning

Consider a state transition from current state s = (n, f) to
the next state s’ = (n’, f/). We know from Eq. (5) that the
transition dynamics has two components. This decomposition
facilitates the design of RL algorithms that can effectively
handle partial knowledge of the environment.

Let § = (n, f) be a virtual state immediately after taking
an action, but before the impact of the stochastic arrivals and
departures, which is referred to as the post-decision state. Here
n is the corresponding allocation matrix. Given this virtual
state S, we can rewrite Eq. (8) as

P(n'|s,a) = P(n|n) - P(nls, a).

This enables us to decompose the system dynamics in Eq. (5)
into action-controlled (known), P¥(-|-,-), and stochastic (un-
known), P¥(-|-, -), transitions.

P(s'[s,a) = P(nls,a) -P(n'ln)-P(f). (10)
—— —
action controlled €xogenous
]P’k(§|s,a) P“(s'|3,a)

The purely action controlled evolution of the allocation
matrix is deterministic, i.e., for § = (n, f),

P*(5|s,a) = P(n|s,a) = 1. (11)

The uncertainty in system dynamics arises primarily from
the stochastic arrival and departure processes, enabling a
structured yet flexible modeling approach for learning-based
control. We can leverage these structural attributes to utilize
the potential of post-decision state analysis to reduce complex-
ity [24], [25]. In the next section, we present reinforcement
learning algorithms based on PDS to efficiently learn the
optimal policy under partially known system dynamics.

Pre-decision states

A -
PDS iterations
__________________ -

Post-decision states

Fig. 3: Tllustration of PDS-based state transition.

C. PDS Learning Algorithms: PDS Value Iteration (PDS-VI)
and PDS-Q Learning

1) PDS-based value iteration (PDS-VI): Let s = (n, f)
be the state of the system in some time slot. Let a € A(s)
be the action chosen at state s and a be the corresponding
matrix. Then the post-decision state represented by s is given
by § = (n,f) = (n + a, f). Let w be the K x M matrix
of departures observed at the end of the time slot whose row
vectors, uy, k € [K], are given by

“ €m,
p =
0,

The next actual state, considering the stochastic arrivals and
departures, is termed as the pre-decision state, s' = (n/, f'),
where n’ = 7 — u = n + a — u. The sequence of state
transitions considering PDS is shown in Figure 3.

The Bellman equation for our MDP can be written as,

flow of type m departs from UPF k (12)
if no departures.

min

V(S) - acA(s)

{e)+ VR a) Vel oy

By leveraging the PDS transition structure in Egs. (10), (11)
and substituting for s’, we can rewrite Eq. (13) as

Now we define the post-decision state value function, Vo
S — R as the expected value over all pre-decision states, s/,
reachable from the post-decision state,

V(5) = E«[V(s)] = Y P('|n) - B(f) - V(s'). (14)
With this definition, the Bellman equation becomes
V(s) = min {€(s) + 2V ()} (s)

Let o’ € A(s’) be the action chosen at state s’ and a’ be the
corresponding indicator matrix. Also, let the next post decision
state after selecting a’ at s’ be §' = (n’+da/, f’). We can write
the value equation for the state, s’, as

V(s') = min
a’eA(s’)

{an',)4V + f’>}.

{e 49 X pia) P via-u).
flu

Algorithm 1 Value iteration with PDS (PDS-VI)

Input: Number of UPFs K, Number of flow types M, Re-
source requirements R, Capacities C, Unit cost ¢y,
Output: Policy 7 R
1: Initialize post-state § = (7, f),5€ S,V «—0,and t =0
2: fort=0,1,2,3,... do
3: Observe departures and compute departure matrix w
using Eq. (12) //departures

Observe the flow arrival f’ /I arrival

Compute s’ = (7 — u, f')

Determine feasible actions, A(s’)

Update V;,1(3) using Eq. (17) and obtain a’ corre-
sponding to the minimizing action a’ € A(s’)
Monotonicity-based Acceleration:

8: Find all immediate neighbor states of s that differ by

1 flow in the allocation matrix
9: _ if neighbor state matrix 72" has 1 additional flow and

Vip1 (") < Vig1(R) then Vigy (") — Vi ()

10 end if

A A

11:_ if neighbor state 1" has 1 less flow and Vi (R") >
Vie1 () then Vi () < Vi ()

12: end if

13: Compute §' = (n —u + a/, f')

14: Update 7(s') = a’ and § = §

15: end for

16: return 7

substituting this in Eq. (14), we obtain the equation that forms
the basis for the proposed value iteration algorithm,

min

V(3) =
(S) a’eA(s’)

>, B('|i) - B(f)

fhu

66—, f)+

W(h—utd, f’)]. (16)

Remark 1. Compared to the standard Bellman equation, us-
ing the structural property of the formulation, the expectation
is outside the minimization in Eq. (16). This enables us to
propose a value learning using stochastic approximation.

Remark 2. Eq. (16) is the Bellman’s equation for the PDS
value function V. By substituting the optimal value corre-
sponding to the PDS analysis, V*, in Eq.(15), the optimal
value vector of Eq. (13), V*, can be obtained. This in turn,
also gives us the optimal policy m*.

2) PDS-VI Algorithm and Convergence Guarantee: Next,
we describe our proposed PDS-based value iteration (PDS-
VI) algorithm. Consider Eq. (16). Let {a;}:>¢ be a positive
step-size sequence satisfying the Robbins-Monro conditions
Yo = o and Y, (ay)? < co. Using these step sizes, we
perform stochastic approximation of value vector in Eq. (16)
and update the estimate of each state at every time step
depending on the observed arrivals and departures according

to the following update rule

‘7t+1(§) =‘7t(§) + atla’g}g’)

(€02 —u,)+

Wilh—u+a,f)-Vi®)|, A

Vie1(3") =Vi(3"), for all 5" # 5.

The iterative value estimation algorithm based on the given
update is provided in Algorithm 1. Theorem below proves that
these iterates converge to the optimal value of the PDS value
vector, V*. Proof of Theorem 1 is given in Section IX.

Theorem 1. The PDS value function iterates in Eq. (17)
converge to the optimal PDS value function, V; — V*. [

3) Properties of PDS-VI: In this subsection, we establish
three key structural properties of the proposed PDS-VI ap-
proach and demonstrate how these properties can be leveraged
to accelerate learning and improve convergence of the learning
algorithms. These findings are further corroborated through
simulation experiments. We provide the formal statements in
Theorem 2 and present the proof in Section VIIL

Theorem 2. The proposed PDS value iteration approach
satisfies the following three structural properties.

1) For any post-decision state (1, f), the post-decision value
function satisfies \7(71, f) = XN/(ﬁ, -). That is, the PDS
value function does not depend on flow arrival index f.

2) Consider two arbitrary post-decision states § = (1, f)
and § = (', f) such that 7' = n (element-wise).
Then, the optimal post-decision value ﬁmctionwv*(ﬁ) is
monotonically non-decreasing, i.e., V*(n') = V*(n).

3) Consider two arbitrary pre-decision states s = (n, f)
and ' = (0, f) such that n' > n (element-wise). For
a given flow type arrival f, the optimal pre-decision
value function is monotonically non-decreasing, i.e.,

V*(n, f) < V*(n/, f), for all f € {0} v [M]. O

We utilize these properties to further accelerate learning.
Specifically, for states with poor value estimate, we clip their
value estimates to the values provided by their neighbors by
leveraging the monotonicity property.

4) PDS Q-Learning and Convergence Guarantees: We now
present a PDS-based Q learning (PDS-Q) algorithm. While
PDS-VI updates the value estimate of a single state in each
time slot, the PDS-Q algorithm allows multiple states to be
updated within a single slot, potentially leading to faster
convergence. PDS-Q has two key distinctions over the single
update PDS-VI. (i) It enables action exploration which might
aid in learning a better policy, and (ii)) A given post-decision
state can be reached from multiple pre-decision states under
different actions, arrivals and departures. It is thus possible to
update multiple pre-decision states from a single post-decision
state value estimate using a two-stage PDS-Q algorithm.

Consider the transitions shown in Fig. 3. Let @ e RISIXIA]
and Q € RISIXIAl be the Q-tables of the PDS state-action
pairs (§,a) and actual state-action pairs (s, a), respectively.
We know that @(s, a) is the expected value of all possible

Algorithm 2 PDS Q-Learning (PDS-Q)

Input: Number of UPFs K, Number of flow types M, Re-
source requirements R, Capacities C, and Unit cost ¢y
Output: Policy
1: Initialize Q@ < 0, Q@ < 0, s = (n, f),s€ S, and t =0
2: fort=0,1,2,3,... do
3: Determine feasible actions, A(s)
argminge 4 Q(s, a),
random action,
5: Find the corresponding matrix a
Compute 7 = n + a and § = (7, f)
: Observe departures and compute departure matrix u
using Eq. (12) /ldepartures
: Observe the flow arrival f’ /I arrival
: Compute s' = (7 — u, f')
10: Update Q¢+1(5, a) using Eq. (18)
11 Update Q:+1(s, a) using Eq. (19)
12: Update 7(s) = a and s = s
13: end for
14: return m

. wp. 1—¢€
4: Take an action a € P
W.p. €.

future states that can be reached from state s under action a.
Then the Q-value of the PDS is given by

~

Q5.0) = By [ymin Q(s',a)]
= Y P15 @)y minQ(s', a')
= SR [R) - B() [y minQ(s',)]

Then we can update () for some state-action pair (3,a) at
some time slot ¢ + 1 using stochastic approximation,

Qi(5.a) + ar[ymin Qi(s', @)
Qt""l(g’ a) = _ét(gv a)]a if (57 a) = (§t7at); (18)
@t(ga a)7

This is then used to update the Q-value of the actual pre-
decision state using the following equation:

Qr+1(s,a) = E[E(s) + Qr41(5,a)]
= &(5) + P(3]s,@)Qe11(5, @)
=£(s) + ©t+1(§7 a).

Theorem 3 proves convergence of PDS-Q algorithm. The proof
is given in Section IX.

otherwise.

19)

Theorem 3. The iterates of the two-stage PDS-Q algorithm
in Egs. (18) and (19) converge to the optimal value functions

(Q: — Q) and (Qy — Q™) respectively. O

Remark 3. PDS-Q adds significant advantage in systems with
large or highly stochastic action spaces, where multiple pre-
decision states can lead to the same post-decision state under
different actions. In such cases, a single post-decision Q-value
update can be used to update multiple pre-decision state Q-
values simultaneously, enabling faster convergence.

Algorithm 3 Accelerated PDS-based Tournament Algorithm

Input: Number of UPFs K, Number of flow types M, Re-
source requirements R, Capacities C, and Unit cost ¢y
QOutput: Allocation policy 7,
1: for each UPF pair i,j € [K] do

2: Run Algorithm 1 to solve the problem for UPFs ¢ and j
3: Obtain optimal PDS policy for UPFs ¢ and j, 77;

4: end for

5. for each state s € S do

6: fori,je[K],i=1,j=2do

7: Find the sub-state of s restricted to UPFs ¢, 7, s|;
8: Find the allocation, a € A(s|; ;) for s|; ; under 77
9: ifa=ithen:i=dand j=5+1

10: else i=jand j=7+1

11: end if

12: Go to line 7

13: end for

14: 7TT(S) =1

15: end for

16: return 7w

VI. APPROXIMATE TOURNAMENT PDS ALGORITHM

Reinforcement learning algorithms often suffer from the
curse of dimensionality, as the state space grows exponentially
in the number of UPFs. However, considering the structural
properties of the state space in our formulation, we observe
that given a state matrix n, the rows are independent, i.e., the
number of flows in each UPF and their transition dynamics
depend solely on the chosen action and exogenous factors and
are independent of those of the other UPFs. We exploit this
property to decompose the original problem into smaller sub-
problems and develop a novel accelerated heuristic algorithm
that solves a set of smaller sub-problems involving fewer
candidate UPFs rather than optimizing over all UPFs at once
and then combine the policy to derive a strategy for the original
problem. Our proposition is that a complex K-UPF decision
problem can be decomposed as a series of 2-UPF decisions and
the sub-policies can be aggregated to obtain an approximate
global policy 7 for the K-UPF problem. Specifically, we
compute the optimal policies 7;; for all (%) pairs of UPFs
using Algorithm 1, where (4, j) are the considered UPF pair.
For each state in the original problem, we obtain the policy
by comparing and aggregating the pairwise policies.

Definition 1. Consider the state s = (n, f). For a given pair
of UPFs i, j, we define the sub-state as s;j = (n;;, f) where
n;; is the 2 x M sub-matrix of n containing rows n; and n;.
The arriving flow f is preserved.

To obtain an approximate policy over K UPFs, we use a
sequential elimination tournament. We begin with a pair of
UPFs and compute the sub-state s;;. From the corresponding
pairwise optimal policy 77;, we extract the optimal action for
s;; and retain the UPF associated with the chosen action, while
discarding the other. The retained UPF is then compared with
the next candidate UPF, and the process is repeated until all
K UPFs have been evaluated and we obtain an approximate

action (UPF), which amounts to K — 1 comparisons. If at any
step, both UPFs in the pair are infeasible for the arriving flow,
we continue with the previously retained UPF. This choice
does not affect the final outcome, since any feasible UPF
compared later will prevail, and if none exists then the optimal
action is 0 (i.e., the flow is blocked). We repeat this process
for each state s to aggregate the heuristic action mr(s) thus
constructing the heuristic policy 7 for the original problem.
This heuristic method is provided in Algorithm 3.

In practice, the algorithm requires only & — 1 lookups for a
dynamic K-UPF decision as the optimal policies for all (%)
sub-problems can be precomputed offline. This heuristic policy
does not guarantee optimality, but it drastically reduces the
computational time by lowering the per-decision computation
from exponential in K to linear in K while providing an
approximate optimal solution.

Remark 4. The proposed Tournament algorithm can be easily
adapted to scenarios where new UPFs are added to the
system. When a new UPF is added to the system, only
K additional pairwise policies between the new UPF and
each existing one needs to be computed. Consequently, the
online decision process involves one additional comparison,
maintaining linear computational growth in K ensuring the
scalability of the Tournament policy.

Complexity Analysis: A summary of the storage and
computational complexities for each algorithm is provided in
Table II. In terms of storage, The value iteration algorithm
needs to store the value estimate at each state and hence has a
complexity of |S|. Both Q-learning algorithms stores the ex-
pected value of each state-action pair and thus the complexity
of |S] x |A|. When considering computational complexity,
each algorithm performs a minimization over the feasible
actions for the expected value so each has the complexity of
| A|. For the Tournament method, each pairwise policy needs
to be stored leading to a storage complexity of (%) ~ K?x
the state space cardinality of the two UPF subproblem. The
computational complexity is O(|A]) for K — 1 lookups.

TABLE II: Complexity Analysis

Algorithm Storage Computational
Complexity Complexity
Q-learning O(|S] x |A]) O(]A])
Q-learning with PDS O(|S] x |A]) O(]A])
Value iteration with PDS O(lS)) O(]A])
Tournament method O(|A|2 - (|C/R1])2M) O(]A])

VII. NUMERICAL SIMULATIONS
A. Data Generation and Experimental Setting

We evaluated the proposed algorithms on a synthetic dataset.
The following parameters are fixed in all experiments. In all
experiments, we considered two flow types w.p. by = 0.6 and
by = 0.4, respectively. The average rate requirement for each
flow type is set as Ry = 30 and R, = 35. The maximum
data rate ('), is set to 100 for each UPF. We set the discount
factor to 0.96. We conducted multiple experiments by varying

N
=3
S

—— PDS-VI (Base) 200
—— PDS-VI (Accelerated)
160

—
o
=)

Average Cost
=
~
S

®
S
Average Power Cost

— PDS-VI (Base)
—— PDS-VI (Accelerated)

— PDS-VI (Base)
—— PDS-VI (Accelerated)

-3

~

o

Average Delay Cost

40 40 5
0 0 4
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Iterations x10° Iterations x10° Iterations x10°
(a) (b)
1.0 200 400

—— PDS-VI (Base)
—— PDS-VI (Accelerated)

— PDS-VI (Base)
—— PDS-VI (Accelerated)

o o
o ©

o
'S
Cumulative Flow Drops

Relative Bellman Error

I
N

40

o
o

300 = PDS-VI (Base)
B PDS-VI (Accelerated)
—= p=0.3, ,=0.1
— p=0.7, q=0.3
—-- p=0.9, =05

N
=3
S

Average Cost

100

5
Iterations x10°

(d) (e)

5
Iterations x10°

5
Iterations x10°

®

Fig. 4: Comparison of PDS-VI (Base) vs. PDS-VI (Accelerated) with monotonicity. For all plots the number of UPFs K =4
and the number of flow types M = 2. Figure 4a presents average cost, Figure 4b presents average power cost, Figure 4c
presents average delay cost, Figure 4d presents plots for average relative Bellman error, Figure 4e represents the number of
flows blocked with respect to iteration, and Figure 4f presents an ablation study for the 4 UPF case.

the number of UPFs, as well as the arrival and departure
probabilities, and compared the performance against various
baselines. We implemented all simulations in Python. The
simulations were run on a Windows machine with Intel(R)
Xeon(R) W-1370 processor. All simulation results are averaged
over 100 independent Monte Carlo runs.

B. Baseline Algorithms

For experiments with smaller problem sizes, where comput-
ing the optimal policy is feasible, we derived the ground-truth
optimal policy using value iteration. Note that this requires
knowledge of the exogenous parameters. The resulting optimal
policy is then used to compute error metrics for evaluating
the performance of the proposed learning algorithm relative
to other learning-based baselines.

Value iteration is a dynamic programming algorithm that
aims to find the optimal value function V*(s) that gives the
expected minimum cost starting from state s and following
the optimal policy thereafter. It can be viewed as an update
rule version of the Bellman optimality equation. The update
equation for value iteration is given by

Visi(s) = €(s) + min 7Y P(s']s,a)Vi(s') VseS. (20)

acA(s) >

We also considered the standard Q-learning algorithm intro-
duced in Eq. (9) as a baseline to compare the performance
of the proposed algorithms. The value function V(s) =
min, Q[s, a]. The Q-learning algorithm is implemented with
e-greedy exploration with € = 0.3. The Q-learning algorithm
does not exploit the underlying structure of the problem. Our
objective is to demonstrate that the proposed PDS approach
achieves performance comparable to standard Q-learning more

efficiently, i.e., with fewer data samples and reduced computa-
tional time. For a scalable baseline for larger sized problems,
we utilize a greedy heuristic that chooses the action with
minimum immediate cost as a baseline method.

C. Metrics

We compared the algorithms in terms of convergence speed
and average cost. To this end, we consider the time-averaged
cost incurred by each algorithm, given by

for cost performance and the convergence by relative Bellman
error (RBE). Since states are visited at different frequencies,
we opt for a weighted error, given by

R, - See (Vi) —V* (@)

2sws - (V*(s)])
where w, is number of times the state s is visited and V* is
the ground truth. We initialize the value vector and Q-table
with the immediate cost to provide a fair starting point.

D. Results and Discussion

1) Experiment I - Monotonicity Analysis: In this experi-
ment we studied the impact of leveraging the monotonicity
property of the post-decision state value vector V. We set the
parameters as K =4, p = 0.7, and g = 0.3, for all k € [K].
The total number of states in this experiment is 12288. The
individual power costs are ¢; = 4,¢c5 = 3,¢3 = 2, and ¢4 =
1. For the ablation study, we consider two additional flow
arrival and departure probabilities with p = 0.3, ¢ = 0.1 and
p = 0.9, qr = 0.5. The results are presented in Figure 4.

—— PDSVI (Accelerated) —— PDS-VI (Accelerated) —— PDS-VI (Accelerated)
—— Q-Learning 250 —— Q-Learning 8.0 —— Q-Learning
240 — PDS-Q o — PDS-Q . — PDS-Q
3200 87.2
= S S
2180 g oy
o 2150 < 6.4
g 2 36
=120 [1)
$ 2100 85.6
S 5 5]
> >
60 < 50 <48
0 0 4.0
00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14
Iterations %108 Iterations x10° Iterations x10°
(a) (b)
1.0 —— PDS-VI (Accelerated) 600] — PDS-VI (Accelerated) 500
—— Q-Learning —— Q-Leamning
§0.8 —— PDS-Q g — PDS-Q 400
b 2450
a o |
] z 8300] |
£06 s o 1 ——- p=03,q=0.1
3 @ 300 1<y — p=0.7,4=0.3
2 ® —- p=0.9, g=0.5
v0.4] g 200
= E 150 <
£0.2 3 100
0.0 0 0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Iterations x10° Iterations x10° Iterations x10°
(d) (e ®

Fig. 5: Comparison of PDS algorithms vs. Q-learning. For all plots the number of UPFs K = 4 and the number of flow
types M = 2. Figure 5a presents average cost, Figure 5b presents average power cost, Figure 5c presents average delay cost,
Figure 5d presents plots for average relative Bellman error, RBE, Figure 5e represents the number of flows dropped with
respect to iteration, and Figure 5f presents the results for an ablation study by varying the exogeneous parameters.

T

-
o
3

200
200
150

Average Cost
Average Power Cost
3
8

N
o

Optimal
—— Greedy
—— PDS-VI (Accelerated)
—— Q-Learning
—— PDS-Q
—— Tournament

-
o

~

S

Optimal
—— Greedy
—— PDS-VI (Accelerated)

Average Delay Cost
-
5
Cumulative Flow Drops
P
I

100 Optimal Optimal 8 — Q-Learning 10
—— Greedy —— Greedy — PDS-Q
~—— PDSVI (Accelerated) 50 —— PDSVI (Accelerated) —| Toumafment

50 —— Q-Leaming —— Q-Leaming 6 5
— PDS-Q — PDS-Q

o — Tournamen t o — Tournamen t 4 0
00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14
Iterations x10% Iterations x10% Iterations x10% Iterations x10%
(a) (b) (c) (d)

Fig. 6: Evaluation of learned policies - Optimal (Dynamic Programming), Greedy, PDS-VI (Accelerated), Q-PDS, Q-learning,
and Tournament algorithms. For all plots i = 4 and M = 2. Figure 6a, Figure 6b, Figure 6¢ presents the average cost, average
power cost, and average delay cost, respectively. Figure 6d represents the number of flows dropped with respect to iteration.

The PDS-VI (Accelerated) exploiting the monotonicity
property achieves faster convergence in terms of relative
Bellman error (RBE), reaching RBE < 0.1 at approximately
2 x 10° iterations compared to PDS-VI (Base) at 3 x 10°
iterations. PDS-VI (Accelerated) also delivers improvements
in other metrics. It reduces cumulative flow rejections by
approximately 50 flows, achieves lower delay cost (6.2 vs.
6.8), and maintains lower total and power costs than PDS-VI
(Base). These results demonstrate that exploiting monotonicity
properties yields tangible benefits in network performance,
particularly, faster convergence, flow acceptance, and delay
efficiency. We conducted an ablation study by varying the
arrival and departure probabilities to assess the sensitivity of
the learning algorithms. Figure 4f highlights a key structural
effect. When the departure probabilities are small, the system
explores the state space sufficiently, leaving no margin for
additional gains from monotonicity-based bounds. Conversely,
when the departure probabilities are sufficiently high, the
trajectory visits too few distinct states, so the algorithm cannot
effectively exploit monotonicity-based acceleration.

2) Experiment 2 - Training Phase for Learning Algorithms:
This experiment aims to evaluate the performance of the learn-
ing algorithm during the training phase. We set the baseline
parameters as K =4, p = 0.7, and g = 0.3, for all k € [K].
The total number of states for this example is 12288. The in-
dividual power costs are ¢; = 4,co = 3,c3 = 2, and ¢4 = 1.
For the ablation study, we considered two additional flow
arrival and departure probabilities with p = 0.3,qx = 0.1
and p = 0.9, ¢ = 0.5. The results are presented in Figure 5.

As shown in Figure 5d, the PDS-based algorithms con-
verge faster than the standard Q-learning algorithm. While
the PDS-VI (Accelerated) achieves an RBE < 0.1 in just
2 x 10° iterations, Q-learning with PDS achieves it in under
1 x 10% iterations compared to standard Q-learning which
requires 1.5 x 10 iterations. This rapid convergence in RBE
directly translates to faster convergence of the underlying cost
metrics. As evidenced by Figures 5a-5c, PDS-VI (Accelerated)
achieves more efficient cost performance, reaching a lower
average cost fastest. PDS-Q also performs better than baseline
Q-learning although the difference is not as significant as PDS-

p = 0.600 p = 0.650

p = 0.750 p = 0.800

S
G
~
15
3

H
o
S

150
125
2
S 100

N
&
3

N
S
3

&
3

Optimal
—— Greedy

—— PDSVI (Accelerated)
—— Q-Learning

—— PDS-Q

—— Tournament

Optimal
—— Greedy
—— PDSVI (Accelerated)
—— Q-Learning
— PDSQ
—— Tournament

Average Cost
o
5
8

w
S

o
g
§ 7
< 50
25
0 o

Optimal
—— Greedy
—— PDS-VI (Accelerated)
—— Q-Leaming
— PDS-Q
— Tournament

9150
2

Average Cost
= 5
8

3
z 100

50

250
% 200
8
S

Optimal
—— Greedy
—— PDS-VI (Accelerated)
— Q-Leaming

w
o &

00 02 04 06 08 10 12 14
Iterations x10%

(a)

00 02 04 06 08 10 12 14
Iterations x10%

(b)

00 02 04 06 08 10 12 14
Iterations x10%

(©

00 02 04 06 08 10 12 14
Iterations x10

(d)

Fig. 7: Robustness evaluation of learned policies under varied arrival probability. For all plots, K = 4 and M = 2.
Figures 7a, 7b, 7c, and 7d compare cost performance across Optimal (Dynamic Programming with p = 0.7), Greedy, PDS-VI
(Accelerated), PDS-Q, Q-learning, and Tournament algorithm baselines for arrival probability deviations of p — 0.1, p — 0.05,
p + 0.05, and p + 0.1, respectively. Results demonstrate the stability of structure-aware methods under distribution shift.

3500
= p=0.7, Ge=0.1
p=07, =02
= p=07, Ge=0.3
m— p=0.8, q=0.1
m— p=0.8, q;=0.2 -
p=0.8, q=0.3 -~ -
p=0.9, q=0.1 -
p=0.9, gy=02 Prs b

3000

2500

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

N
o
S
=]

p=0.9,q,=03 -
—— Tournament -
——- Greedy

-
u
=
S

Final Average Cost

1000

77

500

Nimber of UPFs (K)
Fig. 8: Performance comparison of Greedy vs. Tournament
policies across increasing number of UPFs K and different
arrival (p) and departure (qx) probabilities.

VI (Accelerated). This can be attributed to two main factors:
(i) The Q-algorithms perform exploration during the learning
phase, leading to sub-optimal actions and higher costs, and (ii)
since the state transition (the allocation matrix of the state)
is deterministic for a given action, this implies that action
selection is not benefiting from exploration and thus value
iteration, which always chooses ming, learns a policy similar
to Q-based algorithms.

Figures 5b and 5c highlight the individual power and delay
components which clearly emphasise that each component cost
also mirrors similar effect: PDS-VI (Accelerated) achieves an
average power cost of ~ 130, improving over PDS-Q (~ 170)
and Q-learning (= 175), and maintains the smallest delay cost
(~ 5.7) relative to PDS-Q (& 6.5) and Q-learning (~ 6.7).
Figure 5e also confirms that PDS-VI (Accelerated), which
chooses the minimizing action admits more flows, blocking
fewer flows than PDS-Q and Q-learning. The ablation study
demonstrates that, irrespective of the arrival and departure
dynamics, PDS-based algorithms consistently outperform the
standard Q-learning algorithm.

3) Experiment 3 - Policy Evaluation: In this experiment we
evaluated the performance of policies obtained using Optimal
Baseline (dynamic programming via value iteration), PDS-VI
(Accelerated), PDS-Q, Q-learning, Tournament, and Greedy
heuristic. We set the parameters as K = 4, p = 0.7, and
gr = 0.3, for all k¥ € [K], and |S| = 12288. The power
costs are ¢c; = 4,co = 3,c3 = 2, and ¢4 = 1. The results are

presented in Figure 6.

During the evaluation of learned policies, the proposed
methods - PDS-Q, PDS-VI (Accelerated), and Tournament
algorithms perform comparably as seen in Figures 6a—6d. The
PDS-VI (Accelerated), PDS-Q and Tournament algorithms
achieve average cost close to the optimal baseline and better
than Q-learning. The delay and power costs also show similar
trends. Figure 6d highlights a crucial inference. Across 10*
iterations with 7 x 103 arriving flows, all learning algorithms
and the Tournament algorithm drop very few flows (~ 2-
3), whereas the Greedy heuristic drops ~ 25 flows. Greedy
heuristic drops ~ 22 flows more than the proposed ap-
proaches. However, while dropping fewer flows, the proposed
approaches also achieve a much better cost performance. This
is because the cost of serving ~ 22 additional flows is much
lesser compared to the substantial costs incurred by Greedy
heuristic due to suboptimal decisions.

4) Experiment 4 - Robustness: In this experiment we stud-
ied the robustness of the policies trained at p = 0.7 when
deployed under shifted arrival probability distributions. We set
the parameters as K = 4 and g, = 0.3, for all k € [K]. The
total number of states for this example is 12288. The individual
power costs are ¢; = 4,co = 3,c3 = 2, and ¢4 = 1. Policies
are evaluated under p € {0.6,0.65,0.75,0.8}, corresponding
to +£0.05 and 0.1 deviations from the training distribution
(p = 0.7). We present the results in Figure 7.

Figure 7a (p = 0.6), Figure 7b (p = 0.65), Figure 7c
(p = 0.75), and Figure 7d (p = 0.8) show average cost
under each shifted distribution. Here, ‘Optimal’ refers to the
policy obtained by dynamic programming solution at p = 0.7
which provides the baseline for variations in cost as arrival
probability deviates from the training value, serving as a
lower bound reference rather than the true optimum for each
shifted distribution. Despite this distribution mismatch, PDS-
VI (Accelerated) maintains performance closest to this refer-
ence across all arrival probability shifts. Q-learning exhibits
greater degradation under higher arrival rates (p = 0.8),
while Greedy consistently underperforms. The Tournament
heuristic achieves robustness comparable to learning-based
methods and for higher p even outperforms Q-PDS. These
results demonstrate that policies learned by exploiting problem
structure exhibit superior robustness to distribution shifts.

5) Experiment 5 - Scalability Analysis: This experiment
evaluates the scalability of the Tournament method and as-

sesses how increasing the number of UPFs, K, affects cost,
in comparison with a Greedy heuristic. We considered dif-
ferent configurations of (p,gqx) with p € {0.7,0.8,0.9} and
gr € {0.1,0.2,0.3} set uniformly across all k¥ € [K]. The
number of UPFs K is varied from 4 to 14 in increments of 2.
The ¢y, values are varied accordingly to ensure they are distinct
for each k € [K]. The results are presented in Figure 8.

Across the (p, gr) configurations, Tournament outperforms
Greedy for all values of K. The gap is largest when arrivals
are higher and departures are lower (high p, low g;), because
congestion is higher and allocation decisions matter more.
When departures are higher (larger gj), congestion is lower,
and the gap shrinks because the system is more forgiving
to suboptimal decisions. Moreover, for each fixed (p,qx)
configuration, increasing the number of UPFs K is beneficial
only up to a certain point. Beyond a certain threshold, adding
UPFs does not significantly reduce the average cost and can
be turned off to save energy.

VIII. PROOF OF THEOREM 2 (STRUCTURAL PROPERTIES)

In this section we provide the proof of the properties of the
PDS-VI analysis given in Theorem 2.

A. Preliminaries

Here we provide the background and standard results uti-
lized in the proof of Theorem 2.

Definition 2 ([26]). Let X and Y be two random vectors with
distributions A and A’ respectively. A coupling of random
vectors X and Y is a pair (X,Y) defined on a common
probability space such that the marginal distribution of Xis A
and the marginal distribution of Y is A'. The Jjoint distribution
of (X , Y) can be arbitrary, provided the marginals match.

We first state a standard result connecting coupling to the
ordering of expectations we use in the proof.

Proposition 1 ([26], [27]). (Monotone Coupling of Stochas-
tic Dominance) Let X and Y be two random vectors. If there
exists a coupling (X , Y) of X and Y such that X <Y almost
surely (element-wise), then X is stochastically dominated
by Y. Specifically, for any component-wise non-decreasing
function g, provided that the expectations are well-defined,

E[g(X)] < E[g(Y)].

B. Supporting Lemmas and their Proofs

In this subsection, we present the supporting lemmas used
in the proof of Theorem 2.

Consider two arbitrary post-decision states § = (7, f) and
§' = (n/, f) that are identical in all components except that
7' differs from 72 by one additional flow of type m’ allocated
to UPF k. That is, R},,, = Tgn + 1 and ZWE[M] Ny, =
Zme[M) Nim + 1. We focus on the departure probabilities
from UPF k, since all other UPFs are identical in both states.
We have the following result on UPF k.

Lemma 1. Consider two arbitrary post-decision states § =
(n, f) and 5 = (0, [) such that they are identical except that

n' differs from 1 by one additional flow of type m' allocated
to UPF k. Assume a flow departs from the states 5 and §'.
Let qyy, and g, be the probabilities that a flow of type m
departs from the state § and §', respectively. Then,

D0 (G — i)

ms#m/’

’
= Qgm — 9km/’-

Proof. Recall the construction of the states § = (7, f) and
§ = (n', f). We know that the matrices and n’ are identical
except that 1’ has one additional flow of type m’ allocated to
UPF k. Focus on row k. Using the conditional probabilities
qkm and g, defined above, we observe that for m # m’
ﬁ'km
me[M] Mk Zme[M] ﬁ;fm
_ ﬁkm

(Zme[M] ﬁkm)(ZmE[M] ﬁ;cm)

Summing over all m # m’

ﬁkm

dkm _q;cm = Z

D Tk
7 (Ghm = Qo) = mEm T

m£m/ (Z’me[M] ﬁk"”)(ZTTLG[M] nk:m)

Zme[]%] 'ﬁ'km - 'ﬁ'km’

a (Zme[M] ﬁkm)(zme[M] M)

We have
) N/
/ km/ km
Qm' — km! = . - =
" Zme[M] . Zme[M] Nem
_ Zme[M] Nhm — Nk
(Zme[M] ﬁkm)(Zme[M] ,ﬁ’;cm)

The two expressions are equal, hence proved. O

To apply Proposition 1 and establish monotonicity of the
value function, we demonstrate the existence of a coupling of
the departing flow types that ensures an ordering between the
post-departure allocation matrices. In the following lemma, we
first establish a coupling conditioned on the departure event.

Lemma 2. Assume a flow departs from the states 5 and §'.
Let U and U’ be random variables representing the departing
flow types from UPF k in states 7o and 1/, respectively. There
exists a coupling (U,U") such that

1) PO #U) = gy — Qo

2) IfU £ U, then U' = m'.
This coupling maximizes agreement between U and U’ while
concentrating all disagreement at type m/’.

Proof. Define the overlap masses

hm = miH{ka, Q;mn}?

We construct (U,U’) in the common probability space as
follows.
a) with probability H, set U = U’. The probability of U =
U =mis hy/H
b) with probability 1 — H, sample U from the normalized
residual of ¢ which is ‘1’“1_7_;’” and U’ from the normal-

!
Aim —hm

ized residual of ¢’ which is #km—z

A U=1 U=2 U=3
U qk1 qk2 qk3
U =1 U =2 U =3
v’ G Qoo s
coupling
, /) q;cl
U=0"=1
0 1

Fig. 9: Coupling construction example for Lemma 2 with
M = 3 and m' = 3. The top two bars show the departure-
type distributions gy, and ¢}, and the bottom bar shows a
coupling (U, U") constructed by partitioning [0, 1] into [0, H]
and (H, 1], where h,, = min{qrm,q;,,} and H = 3 hy,
On [0, H], the coupling sets U = U’ = m with P(U = U’ =

m) = hy,. On (H, 1], the remaining mass is 1—H = ;.3 —qx3
and yields U’ = 3, so P(U # U’) = q}3 — g3 and U' = 3
whenever U # U’

By construction, the marginals match as shown

o hm qkm_hm
= = R 1—-H) 2>~— — — my
P(U=m)=H H+() T H ke
- h q,.,, —h
P(U = - . 1—H). km "™ _

Thus (U, U’) is a coupling.

Now we prove 1) and 2) in the lemma statement hold for
this coupling. By Lemma 1, g = ¢}, for all m # m/ and
Qs > Q- ThUS hyyy = Min{qrem, g, } = Gy, for m = m'.

For 1), U # U’, from b) U’ follows the normalized residual

m

h
distribution q“”_iH

P(U#0")=1-H=1-Y min{qm, G}

m

D@m= min{Gem, G })

m

= Z (qkm — Qi) (residual zero at m’)

m#m/’

= Q' — Qeme (by Lemma 1).

For 2), by Lemma 1, the residual w =0 for m #m/
and positive only at m’. Therefore, U’ = m’ almost surely in
case b). This completes the proof. O

We provide an illustrative example to understand Lemma 2.
Consider M = 3 and let m’ = 3, so that n/ differs from 72 by
one additional flow of type 3 at UPF k, i.e., 'fL§€3 = ng3 + 1.
The coupling described in Lemma 2 is visualized in Fig. 9.

Define the overlap masses h,, = min{qim, g, and let
H =%, e(ar hom- To construct the coupling, draw a random
seed X ~ Unif(0,1). Partition [0,1] into [0, H] and (H,1].
If X < H, select a type m € {1,2,3} with probability h,, /H
and set U = U’ = m; equivalently, (U U = m) = hy,. If
X > H, sample U according to {(qxm — hm)/(1— H)} e[

and sample U’ according to {(q},, —
which preserves the marginals.

Since 72/ has one extra flow of type 3, Lemma 1 implies
that the imbalance between {qxn} and {g;,,,} is concentrated
atm’ = 3. Hence ¢}, —hy, = 0 for m # 3 and is positive only
for m = 3. Therefore, on {X > H} we have U’ = 3 almost
surely, and the mismatch probability is exactly the excess mass
at flow type 3, i.e., P(U #U') =1 — H = q}3 — @3-

Remark 5 extends the coupling in Lemma 2 to be uncondi-
tional on departures and ensures the stochastic dominance.

hm)/(l - H)}mE[M]’

Remark 5. Lemma 2 constructs a coupling of the departing
flow types (U,U"), conditional on a departure from UPF k
in both states. Since the departure probability of UPF k is qy,
for both iy, and 7, we can make the coupling unconditional
on departures by coupling whether a departure occurs: with
probability q;, a flow departs from both vy, and W), and with
probability 1 — qi no flow departs from either. If no departure
occurs, set U = U’ = 0; otherwise sample (U,U’) using
the coupling in Lemma 2. We can construct such a coupling
as the probability of departure is independent of the flow-
type decision. Under this construction, either there are no
departures from both states or in the event of a departure,
we employ the coupling (U, U’) from Lemma 2 both of which
preserves stochastic ordering.

Lemma 3. Consider the coupling (~U ,U") constructed in the
proof of Lemma 2. Then, under (U, U’), the following element-
wise relation holds for the allocation matrices.

n—u < n —u.

Proof. Recall the construction of the states § = (7, f) and
§' = (n/, f). The matrices n» and "’ are identical except that
7/ has one additional flow of type m’ allocated to UPF k.
Thus, n; = n , for j # k. Further, for j # k, ¢jm = for

all m e [M]. Thus uj = uj for all j # k. Thus,

/
Qjm3

= Y
nj—uj—nj ’u,]-.

For row k, let e;; and e, denote the one-hot vectors indicating
the departing types. Let e,,» denote the one-hot vector with 1
in position m’ (representing the additional flow of type m’ in

n’). We want to show
element-wise. 20

U and

TNLk—EfJ < ﬁ,k—i—em/—eﬁ,

By Lemma 2, there are two cases to analyze: (i) U =
() U #U and U =m/'.
o If U’ = U, the right hand side of Eq. (21) becomes
N+ €ny — e =Np + ey —eg = (N —) + ey

Since e,,,’ is a one-hot vector with all nonnegative entries,
we have (nk — eU) + em/ N — e element-wise.
e If U’ # U and U’ = m/, the right hand side of Eq. (21)

N + €y —emy = N + €y — €y = N

Since ej; is a one-hot vector (indicating one flow de-

parted), ny > 1y, — e element-wise.
Thus the desired inequality holds for all rows of 7,7’ and
this completes the proof. O

Now we are ready to prove Theorem 2.

C. Proving Theorem 2

Proof of Theorem 2- Property 1): The result is an immediate
consequence from the construction of the post-decision state.
We provide the proof for the sake of completeness.

Recall the post-decision state value function given in
Eq. (16). We observe that the right hand side of the equation
depends only on m,u,a, and the flow arrivals in the next
state f’. However, it does not depend on f. Thus V' (n, f) =
V(n,-). This completes the proof of 1).

N Henceforth, we denote the post-decision value function as
V(n).

Proof of Theorem 2-Property 2): Recall the value iteration
updates on the post-decision state

Vi1 () = Eup {en—u.g)

+’y‘7t(ﬁ—u+a)}].

min
acA(n—u, f')

We show that each iterate ‘7t e RISl is element-wise non-
decreasing in n and the limit V* inherits this property. We
prove by induction on the iteration count ¢.

a) Base case: ‘70 = 0 is monotone by initialization.

b) Induction hypothesis: Assume for some ¢ that

A< = V() <V(R)
c) Induction step: We now prove the result holds for
iteration ¢ + 1 if it holds for the ¢*! iteration.
Construct a coupling of departures (U,U’) as in Lemma 2
for n;, and 7n},. By Lemma 3, the pre-decision states satisfy

I

n:=n—-u < n :=n'—u element-wise. (22)

Recall that for any pre-decision state matrix n and flow f’,

Vi(n, f') = aef(lfffff) {&n., 1) +Wi(n + a)},

and the post-decision state value iteration,

Virr(R) = E[Vi(n, /)] = E[min_ {¢(n, F+Vi(n+a)}].

eA(n,f’
Since n < n’ element-wise (Eq. (22)), we have the
following three facts.

i A(n/, f") < A(n, f'). Thus, the minimization over the
feasible set A(n’, f') cannot yield a lower value than the
minimization over the set A(n, f).

(i) The cost function £ is non-decreasing in the number of
flows by definition. Thus

n<n = £n,f)<Eq,f).

(iii) For a given action matrix a, using the induction hypoth-
esis, we have

Vitn +a) < V,(n' + a).

Consider a € A(n’, f'). By (i), a is a feasible action at (n, f').
Using properties (ii) and (iii),

&, f) +4Vin +a) < W, f) +4Vi(n' +a). (23)

Since A(n/, f') < A(n,f’), applying minimization over
A(n, f) on the left hand side of Eq. (23) and over A(n/, f’)
on the right hand side of Eq. (23) gives

Viln,f) = min_ [&(n.) +Vin+a)]
<, min [€(n' f) + Win +a)] = Vi(n',). (24)

From PDS construction, we know that,
Vi () = E[Vi(n, f)], Visa () = E[Vi(n, £)].
Using Eq. (24), Lemma 3, and Proposition 1 we have
Vig1 () < Viga (7).

~

By induction, each V; () < V;(@/) is non-decreasing for all ¢.
Since V; — V* as t — o0, V*(n) < V*('). This completes
the proof of 2).

Proof of Theorem 2- Property 3): Given the optimal post-
decision value vector V*, the optimal pre-decision value is

Vi f) = min {e(n,f) 4V (n+a)k

By Property 2), ‘7*() is non-decreasing. We know that
n<n' =V*'(n+a)<V*(n +a).

Using the monotonicity of 17*() and (i) — (iii) from the proof
of Property 2), we get

V*(n,f) = min_[£(n, f) +7V*(n +a)]

acA(n,f)
< min [{(n) f) +9V* (0 +a)] =V (0, f).
acA(n/,f)
This completes the proof of Property 3). O

IX. PROOFS OF THEOREM 1 AND THEOREM 3
Proof of Theorem 1: Let T : RIS| — RISI be defined as,

T(V)3) = Y B(n'|) - B(f)
flu

min
a’eA(s’)

[6(h—u, f)+

W(h—u+td, f’)]. (25)

Define T as the sampled operator for some observed f’ and
w at time ¢, then

T(V)(3) =

min

a’eA(s") [E(Iﬁ - u, f/) + 'Y‘Z(’Fl —-u+ a/7 f/):|

We can rewrite Eq. (17) in terms of 7 and 7 as
Virr(5) = 3 + a1 (T(IGE) =) + 01 (5)).
where, €1(5) = T (V;)(3) — T (V4)(). Rearranging,
Vi1(5) = Vi(3) = o (T(V)(3) = V() + e111(5)) - 26)

Let Fy = {(sv,av, &, sy) o<r <t represent the information
up to time ¢. It follows that {e;11(5)}+>0 forms a martingale
difference sequence and E[e;+1(8)|F:] = 0. The iterates
in Eq. (26) are equivalent to the discretized version of the

ordinary differential equation (ODE), V = T(V) — V. From

[28], it can be argued that the convergence of these updates
is equivalent to the convergence of the aforementioned ODE.
Also, T is a ~y-contraction under the sup-norm i.e.,

W) =Tl <A =9l YS9

Thus the iterates 1715 converge to the optimal value V*. O
Proof of Theorem 3: The first-stage update, (S, a) is of the
same form as the post-decision state value iteration update
in Eq. (17), but indexed by state-action pairs instead of just
states. For each fixed (3, a), the update

Qr1(5.0) = Qu(5,a) + ar[ymin Qu(s',a') — Qu(5, a)
is a stochastic approximation of the operator

TQ(5,a) := Y \P(n'[2) - B(f")[y min Q(s', a’)],

which can be verified as a y-contraction. Therefore, using
the same ODE-based argument as in Theorem 1, it is guar-
anteed that the iterates Q+(8, a) converge almost surely to its
fixed point Q* (8, a).

The cost function § is constant for a given state, so the
second-stage update Q;1(s,a) &(s) + Qi41(8,a) is a
deterministic function of @), hence, the Q-table also converges
almost surely. This completes the proof. O

X. CONCLUSION

In this work, we studied the delay- and energy-aware
flow allocation problem in wireless systems under resource
constraints. We formulated the problem as an MDP and
proposed online RL algorithms based on post-decision state
(PDS) learning. By leveraging the decomposable structure
of the system dynamics, i.e., separating the controllable and
exogenous factors, our approach enables efficient learning with
faster convergence. We proved key structural properties of the
PDS approach and demonstrated how they can be exploited
to accelerate learning and improve convergence. We proved
the convergence of the proposed algorithm and evaluated its
performance against the standard Q-learning algorithm, vali-
dating its effectiveness. We also proposed a scalable empirical
Tournament method that utilizes the structural properties of
the formulation to provide an efficient solution in real-time
and we verified its performance against a Greedy algorithm.
Our simulation results validated the accelerated convergence
and improved cost performance of the proposed algorithms.

REFERENCES

[11 X. Wu, J. Farooq, and J. Chen, “Joint admission control and resource
provisioning for URLLC traffic in O-RAN: A constrained multi-agent
reinforcement learning approach,” in IEEE International Conference on
Communications (ICC), 2025, pp. 1426-1431.

[2] A. Vatankhah and R. Liscano, “QoS-aware energy-efficient time-slotted
channel hopping scheduling algorithm,” in IEEE International Confer-
ence on Communications (ICC), 2025, pp. 3538-3544.

[3] C. Wang, X. Ma, R. Xing, S. Li, A. Zhou, and S. Wang, “Delay-and
resource-aware satellite UPF service optimization,” IEEE Transactions
on Mobile Computing, 2024.

[4] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning
for dynamic power allocation in wireless networks,” IEEE Journal on
selected areas in communications, vol. 37, no. 10, pp. 2239-2250, 2019.

[5] F. Tang, Y. Zhou, and N. Kato, “Deep reinforcement learning for dy-
namic uplink/downlink resource allocation in high mobility 5G hetnet,”

IEEE Journal on selected areas in communications, vol. 38, no. 12, pp.
2773-2782, 2020.

[6]

[7]

[8]
[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for
mobile edge computing: A deep reinforcement learning approach,” IEEE
Transactions on Emerging Topics in Computing, vol. 9, no. 3, pp. 1529—
1541, 2021.

Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11,
pp. 11158-11168, 2019.

Z. Han and K. R. Liu, Resource allocation for wireless networks: basics,
techniques, and applications. Cambridge university press, 2008.

S. Stanczak, M. Wiczanowski, and H. Boche, Resource allocation in
wireless networks: theory and algorithms. Springer Science & Business
Media, 2006, vol. 4000.

T. D. Braun, H. J. Siegel, A. A. Maciejewski, and Y. Hong, “Static
resource allocation for heterogeneous computing environments with
tasks having dependencies, priorities, deadlines, and multiple versions,”
Journal of Parallel and Distributed Computing, vol. 68, no. 11, pp.
1504-1516, 2008.

M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund,
“Dynamic mapping of a class of independent tasks onto heterogeneous
computing systems,” Journal of Parallel and Distributed Computing,
vol. 59, no. 2, pp. 107-131, 1999.

X. Kong, C. Lin, Y. Jiang, W. Yan, and X. Chu, “Efficient dynamic task
scheduling in virtualized data centers with fuzzy prediction,” Journal
of network and Computer Applications, vol. 34, no. 4, pp. 1068-1077,
2011.

Z. Xu, L. Zhou, H. Dai, W. Liang, W. Zhou, P. Zhou, W. Xu, and
G. Wu, “Energy-aware collaborative service caching in a 5G-enabled
mec with uncertain payoffs,” IEEE Transactions on Communications,
vol. 70, no. 2, pp. 1058-1071, 2022.

S. Huang, B. Lv, R. Wang, and K. Huang, “Scheduling for mobile
edge computing with random user arrivals—an approximate mdp and
reinforcement learning approach,” IEEE Transactions on Vehicular Tech-
nology, vol. 69, no. 7, pp. 7735-7750, 2020.

N. Mastronarde and M. van der Schaar, “Fast reinforcement learning for
energy-efficient wireless communication,” IEEE Transactions on Signal
Processing, vol. 59, no. 12, pp. 6262-6266, 2011.

F. Fu and M. van der Schaar, “Structural solutions for dynamic schedul-
ing in wireless multimedia transmission,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 22, no. 5, pp. 727-739, 2012.
J. Yang, S. Zhang, X. Wu, Y. Ran, and H. Xi, “Online learning-based
server provisioning for electricity cost reduction in data center,” /EEE
Transactions on Control Systems Technology, vol. 25, no. 3, pp. 1044—
1051, 2017.

X. Chen, Z. Han, H. Zhang, G. Xue, Y. Xiao, and M. Bennis, “Wireless
resource scheduling in virtualized radio access networks using stochastic
learning,” IEEE Transactions on Mobile Computing, vol. 17, no. 4, pp.
961-974, 2018.

X. He, R. Jin, and H. Dai, “Deep pds-learning for privacy-aware
offloading in mec-enabled iot,” IEEE Internet of Things Journal, vol. 6,
no. 3, pp. 4547-4555, 2019.

M. Min, X. Wan, L. Xiao, Y. Chen, M. Xia, D. Wu, and H. Dai,
“Learning-based privacy-aware offloading for healthcare iot with energy
harvesting,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4307—
4316, 2019.

M. G. Bhat, S. Moothedath, and P. Chaporkar, “Post-decision state-based
online learning for delay-energy-aware flow allocation in wireless sys-
tems,” Submitted to IEEE International Conference on Communications,
2026, arXiv:2601.03108.

M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

N. Salodkar, A. Bhorkar, A. Karandikar, and V. S. Borkar, “An on-line
learning algorithm for energy efficient delay constrained scheduling over
a fading channel,” IEEE Journal on Selected Areas in Communications,
vol. 26, no. 4, pp. 732-742, 2008.

J. Zhang, X. He, and H. Dai, “Blind post-decision state-based rein-
forcement learning for intelligent iot,” IEEE Internet of Things Journal,
vol. 10, no. 12, pp. 10605-10 620, 2023.

S. Roch, Modern Discrete Probability: An Essential Toolkit, ser. Cam-
bridge Series in Statistical and Probabilistic Mathematics. Cambridge
University Press, 2024.

T. Lindvall, “On strassen’s theorem on stochastic domination,” 1999.
V. S. Borkar and S. P. Meyn, “The ODE method for convergence of
stochastic approximation and reinforcement learning,” SIAM Journal on
Control and Optimization, vol. 38, no. 2, pp. 447-469, 2000.

